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Abstract
We review a statistical picture of the glassy state derived from the analysis of the
off-equilibrium fluctuation-dissipation relations. We define an ultralong-time
limit where ‘one-time quantities’ are close to equilibrium while the response
and correlation can still display ageing.

In this limit it is possible to relate the fluctuation response relation to
static breaking of ergodicity. The resulting picture suggests that even far from
that limit, the fluctuation-dissipation ratio relates to the rate of growth of the
configurational entropy with the free-energy density.

1. Introduction

Glassy systems spend long periods of time out of equilibrium, i.e. in regions of configuration
space which have vanishing Boltzmann probability. The evolution towards more and more
optimized regions of phase space is so slow that the fast degrees of freedom react on
short timescales as if they were in equilibrium against the frozen background of the slow
variables. On longer timescales, however, the off-equilibrium nature of the glassy phase
shows up in the phenomenon of ageing: the responses to small perturbations, as well as
the correlation functions, depend on the ‘age’ of the glass, i.e. the time spent in the low-
temperature phase [1, 2]. The dynamics becomes slower and slower as the age becomes
greater; nevertheless, even on the largest scales observed, there is no tendency to stop: the
system eventually wanders away from any finite region of phase space.

In the last few years, following some developments in spin-glass mean-field theory [3–5],
many theoretical [6], numerical [7] and more recently experimental papers [8–10] have focused
on the study of off-equilibrium fluctuation-dissipation relations. In [11], it has been shown
that the fluctuation-dissipation relation found in mean-field analysis of glassy relaxation can
be used to define effective temperatures, higher than that of the heat bath governing the heat
exchanges between slow degrees of freedom.

The analysis of the fluctuation-dissipation relation has revealed deep relationships between
ageing dynamics and the nature of the free-energy landscape [12]. In this paper we would like
to review a picture of glassy dynamics based on the analysis of these relations [13].
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Two kinds of glassy system emerge from experimental and theoretical analysis. One can
identify two kinds of glassy behaviour:

• A first class, for which spin glasses provide an example, where the asymptotic values of
extensive quantities, such as internal energy and magnetization, seem not to depend on
the cooling rate or other differences in cooling procedure.

• A second class, that of structural glasses, in which the apparent asymptotic values of these
quantities depend strongly on the cooling rate, and remain strongly different from the
equilibrium values for the largest timescales which can be probed.

Ageing phenomena are common to both families. During ageing the linear response
to external perturbations displays age-dependent behaviour and anomalies with respect to
equilibrium, which is in conformation with the fluctuation-dissipation theorem. Many efforts
have been devoted to relating these anomalies to the properties of the underlying energy or
free-energy landscapes [12–17].

A first step towards the comprehension of this relationship can be achieved by idealizing
the first situation, assuming that for long times all extensive ‘one-time observables’ (1TO), or
more precisely the ones that can be written as sums of local quantities, are close to equilibrium.
We call this situation the ultralong-time limit and observe that in principle:

(a) this limit does not imply the absence of ageing in two time observables such as responses
and correlation functions;

(b) usual nucleation arguments imply that in systems with regular short-range interactions
this limit is achieved in a finite, i.e. volume-independent, time.

Of course this last observation remains a matter of principle in structural glasses, where this
equilibration time is exceedingly long, and one needs to understand dynamics on much shorter
timescale.

For notational simplicity, in the theory that we are going to expose,we will use the language
of magnetic systems. Our considerations, however, will very general and can be immediately
applied, e.g. to glass-forming systems of classical particles in interaction. In order to illustrate
the ideas, we discuss a spin-glass system where the spins Sx interact through a Hamiltonian

H (S) = −
∑
x<y

Jx,y Sx Sy (1)

on the D-dimensional square lattice with short-range interactions Jx,y . The spins will be, for
simplicity, assumed to be Ising variables Sx = ±1. We will consider the dynamical setting of
a fast quench from high to low temperature at an instant marking the origin of the time axes.

2. Ageing in the ultralong-time limit

The classical ageing experiments concentrate on the study of the response of the system to
an external perturbation in the linear regime. Consider the effect of an external magnetic
field h, corresponding to a perturbation term in the Hamiltonian H (1)(S) = −h

∑
x Sx , acting

from the quenching time 0 to a waiting time tw . At linear order in h, the magnetization
M(t, tw) = 1

N

∑
x 〈Sx(t)〉h at later times t can be written as M(t, tw) = hχ(t, tw), where,

introducing the instantaneous response R(t, s) = δ〈M(t)〉
δh(s) , the susceptibility can be written

as χ(t, tw) = ∫ tw
0 ds R(t, s). This is a quantity usually measured in ageing experiments

and exhibits scaling, non-time-translation-invariant behaviour. In usual equilibrium regimes,
this function is related to the correlation function C(t, tw) = 1

N

∑
x,y 〈Sx (t)Sy(tw)〉 by the
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fluctuation-dissipation relation χ(t − tw) = βC(t − tw). Off-equilibrium, the same relation
has in general no reason to be valid. One usually defines the fluctuation-dissipation ratio (FDR)

β x̃(t, tw) = ∂χ(t, tw)/∂ tw
∂C(t, tw)/∂ tw

(2)

or x(t, C) defined by the relation x(t, C(t, tw)) = x̃(t, tw). In equilibrium conditions the FDR
is equal to unity and χ(t, tw) = βC(t − tw). Spin-glass mean-field theory [3–5] has suggested
that in ageing systems x(t, C) tends to a non-trivial limit x(C), taking the limit t, s → ∞ for
fixed values of C(t, s). In these systems the FDR appears to have some universal character.
It is independent of the particular response/correlation function probed. The function x(C)

appears to have mathematically the properties of a probability function. The ratio T/x(C)

can be considered an effective temperature governing heat exchanges with degrees of freedom
reacting on the timescales specified by the value of the correlation [11]. Such non-generic
behaviour can be understood in the ultralong-time limit, resulting in a rather detailed statistical
description on how glassy systems visit configurational space in ageing dynamics. In the limit
in which the FDR becomes time independent, 1TO (e.g. energy and magnetization) become
asymptotically close to their final value. We will call this limit the ‘ultralong-time limit’ in
reference to the fact that structural glasses are always observed on much shorter timescales. Let
us stress that in short-range systems with regular interactions the asymptotic values of the 1TO
must be the equilibrium one. The ultralong-time limit could be appropriate in spin glasses,
where the values of 1TO seem not to depend on the cooling procedure, but it is certainly not an
appropriate description for structural glasses, where the 1TO are strongly out of equilibrium.
In this context we can still think of this limit as a useful conceptualization for studying ageing
in a simplified situation and getting hints as to the statistical principles that govern glassy
dynamics even far from this ideal situation.

3. Equilibrium ergodicity breaking

We would like to discuss how a non-trivial FDR in the ultralong-time limit relates to the
phenomenon of ergodicity breaking in the equilibrium distribution. Breaking of ergodicity, or
absence of ergodicity at equilibrium, means that the weight of the equilibrium distribution
is concentrated on more than one disjoint phase space region (these are called ergodic
components), in which the ergodic property holds separately. If the system is prepared in
one of these regions, it will never get out from it. A familiar example is provided by systems in
the presence of a first-order phase transition, where different phases are equally dynamically
stable. In that case, a suitable ‘external field’ can be used to project on the different phases. The
situation that we would like to describe, that of an ideal glass, can be expected to be different. In
disordered systems, the possible different ergodic components dominating at low temperature
can be expected to be as disordered as the configurations of the high-temperature phase and
no external field is available to select any of them. A suitable description of that situation has
been provided by spin-glass mean-field theory [18] where ergodicity breaking is characterized
statistically through the comparison of the different ergodic components. One first defines a
measure of similarity among configurations, and then studies its statistical distribution induced
by the canonical measure and the eventual quenched disorder. For spin glasses it is natural to
define the overlap between two spin configurations S = (S1, . . . , SN ) and S′ = (S′

1, . . . , S′
N )

as the normalized scalar product:

q(S,S′) = 1

N

∑
i

Si S′
i . (3)
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The overlap probability function (OPF) is defined as

P(q) = 1

Z 2

∑
S,S′

exp(−β(H (S) + H (S′)))δ(q − q(S,S′)) (4)

where the overline denotes the average over the quenched variables of the system (if any). If
ergodicity holds, the OPF is equal to a single delta function. Any difference from this simple
form is a sign of ergodicity breaking. Conversely, a single delta function is not necessarily
associated with ergodicity. The different componentsα = 1, 2, 3, . . . appear in the equilibrium
distribution, each with a probability weight wα reflecting its free-energy difference from the
lowest state. It turns out that the OPF can be non-trivial only if the participation ratio

∑
α w2

α is
non-vanishing in the thermodynamic limit. This excludes e.g. the case of an extensive number
of ergodic components where wα ∼ exp(−N�).

Despite its origin in the context of spin glasses, the concept of overlap, and the
corresponding probability function, can be suitably applied in more general glassy systems.
A possible definition in the case of structural glasses and some applications are discussed
in [19, 20].

4. How ageing relates to equilibrium

Linear response theory allows one to relate the OPF of the canonical probability and the FDR
according to the relation [12]

P(q) = dx(q)

dq
. (5)

The argument that leads to (5) is rather formal, and consists in finding a family of observables,
expressed as sums of local quantities, whose average values relate in equilibrium and in
dynamics respectively to the moments of the OPF and the derivative of the FDR with respect
to the correlation. As the dynamical averages should tend to the equilibrium ones, one deduces
the identity between the OPF and the derivative of the FDR. The argument runs as follows.
Let us consider a set of operators which translate the lattice along a direction ı̂ parallel to one
of the coordinate axes:

T (p)

k (x) = x +
kL

p
ı̂; k = 1, . . . , p − 1. (6)

We denote byS1 the set in which the coordinate in the direction ı̂ takes the values 1, 2, . . . , L/p.
We define our family of perturbations to have the form

Hp(S) =
∑
x∈S1

J (p)
x Sx ST (p)

1 (x)
· · · ST (p)

p−1(x)
, (7)

where the couplings J (p)
x are independent, identically distributed Gaussian variables, with zero

mean and variance EJ J 2
x = p. Despite the apparent long-range character of the interactions,

the perturbations Hp can be seen as short-range observables in a folded space, and as such
they belong to the class of observables whose long-time-limit values tend, according to our
hypothesis, to the equilibrium ones. Let us consider now a system evolving with Hamiltonian
H + h Hp. These perturbations can be seen as short-range perturbations and one can expect
their effect to be described by linear response theory for small h. If we consider the expected
values, in off-equilibrium dynamics and at equilibrium of the perturbation Hp, following simple
mathematical manipulations implied by linear response theory and by self-averaging properties
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with respect to the variables J (p)
x , one finds respectively for the dynamic and equilibrium

averages

〈Hp(t)〉dyn = −βh
∫ 1

0
dq pq p−1x(t, q) (8)

〈Hp〉eq = −βh

(
1 −

∫ 1

0
dq q p P(q)

)
. (9)

In the ultralong-time limit, 〈Hp(t)〉dyn → 〈Hp〉eq for all p. Correspondingly, x(t, q) → x(q)

and integrating (8) by parts we find the relation (5). This relation relates the possibility of a
persistent non-trivial FDR in the ageing dynamics to ergodicity breaking in the equilibrium
measure, and, as we will discuss, can be taken as the starting point for an analysis of how
ageing systems visit configuration space. The relation can be generalized to other important
features which have been identified theoretically as possible in ageing dynamics. One of
these features is ultrametricity which, at equilibrium, implies a hierarchical organization of the
ergodic components. In dynamics, this property means that the times t (C, tw) necessary for the
correlation C(t, tw) to take the value C and defined by the relation C(t (C, tw), tw) = C verify
for C1 < C2 the relation t (C2, tw)/t (C1, tw) −→

tw→∞0; in other words, that decreasing values

of the correlation correspond to increasingly long relaxation times. Reasoning similar to that
leading to (5) allows us to conclude that, surprisingly, in a given system, static ultrametricity
and dynamic ultrametricity are either both present or both absent. Recently, the relation (5) has
also been generalized to local quantities in [21]. A more complete discussion of the relation (5)
should prove the validity of using the linear response in the presence of ergodicity breaking,
which involves the commutation of the thermodynamic limit and h → 0 in statics, as well
as the long-time limit and h → 0 in dynamics. This property has been called ‘stochastic
stability’, in reference to the fact that the commutation of limits is possible whenever the
introduction of weak random perturbations of the kind (7) does not have major effects on the
statistical distribution of the states relevant for the equilibrium probability and the long-time
off-equilibrium dynamics. On physical grounds, one expects stochastic stability to be valid
and linear response theory to have a range of validity in glassy systems. Violation of these
properties should result in dynamical crossovers for t → ∞ and h → 0, which are in principle
experimentally observable. So if in some systems one could measure the asymptotic value of
the FDR, this would provide information on the equilibrium free-energy landscape.

5. Physical picture

The relation (5), which links the off-equilibrium dynamics to the properties of the free-energy
landscape relevant at equilibrium, has been discussed in the previous section on a purely formal
basis: we have supposed equilibration of 1TO together with validity of long-range theory,
and obtained the relation from straight mathematical analysis. The scope of this section is
discussion of its physical origin. In order to simplify the discussion, we will consider the
simplest model of ageing dynamics with a non-trivial FDR. We will suppose that the dynamics
will consist in a short-time equilibrium-like part and a long-time ageing part characterized by
a unique age-dependent relaxation time τ (tw) which grows and tends to infinity for large tw .
Notice that this is the assumption commonly used to fit ageing response data both in structural
glasses [1] and in spin glasses [2]. In this picture the correlation functions can be decomposed
into a stationary short-time part and an ageing long-time part as

C(t, tw) = Cst (t − tw) + Cag

(
t − tw
τ(tw)

)
. (10)
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As usual, we define qE A as the value that separates the stationary from the ageing part of the
correlation, so Cst (t − tw) = C∗

st (t − tw) − qE A is a monotonically decreasing function equal
to 1 − qE A for t − tw = 0 and tending to zero for t − tw → ∞, while Cag

(
t−tw
τ(tw)

)
is equal to qE A

for t−tw
τ(tw)

= 0 and tends to 0 for t−tw
τ(tw)

→ ∞. Correspondingly, we will assume that the FDR
will take the value 1 in the stationary domain (qE A � C(t, tw) � 1) and the constant value
x < 1 in the ageing regime C(t, tw) � qE A, so the linear susceptibility takes the form

χ(t, tw) = βCst (t − tw) + βxCag

(
t − tw
τ(tw)

)
. (11)

The relation between correlation and response is often visualized by plotting parametrically
χ(t, tw) versus C(t, tw) for fixed tw . The present case corresponds to having for large tw two
straight lines respectively of slope β for qE A < C(t, tw) � 1 and βx for 0 � C(t, tw) < qE A.
These forms of the correlation and response are the ones found in models of the p-spin model
family [3]. Numerical simulations of glass-forming systems indicate that the two-regime
behaviour is a good approximation for the finite tw-behaviour of the response not too close to
the estimated value of qE A, although in that case the parameter x depends on tw [22]. In these
cases, however, 1TO are far from equilibrium, at variance with what we suppose here.

The form (11) corresponds to an equilibrium distribution where the function P(q) has the
simple form

P(q) = (1 − x)δ(q − qE A) + xδ(q). (12)

A straightforward computation shows that the observables Hp of the previous section are
expressed according to (9) as

〈Hp〉 = −βh(1 − q p
E A + xq p

E A). (13)

The equilibrium regime at short times implies that the system spends its time in regions
of the configuration space where it has the time to approximately equilibrate before relaxing
further on a much longer scale. This observation can be attributed to decomposition, where
the dynamical variables, say the instantaneous values of the spins, are written as sums of fast
and slow contributions:

Sx (t) = [Sx(t) − mx(t)] + mx(t), (14)

where [Sx(t) − mx(t)] is the fast component and the slow component mx(t) can be simply
defined as

mx(t) = 1

τ (tw)

∫ t+τ(tw)

t
du Sx(u). (15)

The sets of fast variables corresponding to the same slow variables define metastable regions
of configuration space, called ‘quasi-states’, that have lifetimes of the order of τ (tw). This
notion can be related to the potential energy landscape notions of basins or, more precisely,
metabasins [23] in the inherent structure picture [24], with which the quasi-states could be
identified.

We can at this point rather naturally define thermodynamic quantities: to each quasi-state
labelled by the values of the slow variables m = (m1, . . . , m N ) we can associate a free energy
f (m), and we can define a ‘configurational entropy’ �( f ) as the logarithmic multiplicity of
quasi-states as a function of their free energy f .

For long but finite times, the quasi-states dominating the dynamics will present a small but
extensive free-energy difference from the lowest state. The parameter qE A has the meaning
of a self-overlap within a quasi-state: qE A = 1

N

∑
x m2

x(t). The equilibrium distribution, on
the other hand, concentrates on the ergodic components, or true states, which have finite free-
energy differences from the ground state and infinite lifetimes. As we have stressed, if the
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function P(q) is non-trivial, the multiplicity of such states grows less than exponentially with
N . On the other hand, for the number of quasi-states with free-energy difference N � f from
the ground state, one can expect N ( f ) ∼ exp(Nρ � f ).

Let us discuss the effect on the system of a small perturbation and concentrate for simplicity
on the case of p = 1, corresponding to an external magnetic field. As discussed first in [25],
the effect of the field on the equilibrium distribution will be twofold. On one hand, within
any given ergodic component, with given average magnetization Mav , higher weight will be
given to configurations with higher magnetization differences from the average M − Mav .
On the other, in the selection of the components, higher weight will be given to components
with higher average magnetization. The actual value that the magnetization will take can
then be understood as a two-step free-energy-minimization process. The first step is a single-
component free-energy minimization. This is done according to the usual equilibrium relation
within a component: βh(M − Mav) = 1

N β[〈H 2
1 〉sc − 〈H1〉2

sc] = −βh(1 − qE A), where by
〈 · 〉sc we have denoted the average over a single component. The second step is the choice
of the components with the appropriate average magnetization. The probability that a given
unperturbed component has average magnetization Mav is, for small values of Mav , Gaussian
with zero average and variance NqE A. Taking then into account the independence of the
perturbation from the original Hamiltonian, we have that the number of quasi-states with free-
energy difference � f with respect to the unperturbed ground state and average magnetization
Mav is given by

N ( f, Mav) ∼ exp(N[ρ � f − M2
av/2qE A]). (16)

In the presence of the perturbation, the actual value of Mav will be the one minimizing
� f − hMav , respecting the constraint that the number of states is higher than zero:
ρ � f − m2/2(1 − qE A) � 0. One finds that the minimization is achieved in fact for
ρ � f − M2

av/2(1 − q p) = 0, thus finding, by comparing with (13), that ρ = βx .
The equivalence (9) tells us that the same selection criteria should be valid asymptotically in

off-equilibrium dynamics. The way in which the energy distributes among the different degrees
of freedom in dynamics is asymptotically the same as that at equilibrium. Free energy not
only governs equilibrium, but also the dynamics: quasi-states of equal free energy are selected
asymptotically with equal probability. Notice that this conclusion does not depend on the
observables that we have considered in the analysis; according to our line of reasoning, the same
factor x appears in the anomalous response to any perturbation. Under these circumstances,
one may wonder how the system can always be microscopically far from the true equilibrium
components as the off-equilibrium behaviour of correlation and response implies. This relates
to the abundance of quasi-states with extensive free-energy differences N � f , which in order
to have a non-trivial FDR must be exponentially large. In that case, a small � f , while it
implies small differences for the 1TO from the equilibrium values, implies big microscopic
differences between the quasi-states visited and the ergodic components.

These considerations, based on timescale separation and the closeness of the 1TO to their
equilibrium values, do not of course directly apply to structural glasses. However, on the
basis of the analysis of the case of the p-spin model, where the 1TO adopt values different
from the equilibrium ones [13], one can hypothesize that the previous quasi-state selection
principle could also be valid far from the ultralong-time limit. This is supported by numerical
simulations, which have reported the existence of well defined FDR very far from equilibrium
which are fairly constant in the ageing regime [22] and do not appear to depend on the different
quantities which have been studied [26].

In this regime, we probe a region of parameters corresponding to finite configurational
entropy, and as 1TO are strongly out of equilibrium, no connection can be made between the
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measurable values of the FDR and the equilibrium OPF. However, thanks to equiprobability,
in this case also the FDR can be related to some static characterization of the configuration
space. At a given time, corresponding to a quasi-state free energy f , the system will have
reached with equal probability one of the N ( f ) ∼ exp(N�( f )) possible quasi-states, where
the configurational entropy �( f ) is an increasing function of f . In order to rationalize the
relation (13), one has just to suppose that the dynamics is dominated by the relaxation of the
configurational entropy towards smaller values,and that a small perturbation in the Hamiltonian
does not change its rate of reduction. In other words, at a given time tw , the configurational
entropy will take the same value �(tw) in the absence and in the presence of the perturbation.
Writing then the total free energy as an unperturbed term f plus a perturbation term −βhMav ,
one can write that �(tw) = �( f ) − M2

av/2(1 − qE A). Minimizing the total free energy
f = f − βhMav with this constraint, one recovers the formula (13) with the relation

βx = ∂�

∂ f
. (17)

During ageing, the effective temperature 1/(βx) and the configurational entropy obey the same
relation with the total thermodynamic entropy as the true temperature follows at equilibrium.
This kind of relation has been recently used to argue in favour of the ‘Edwards measure’ for
lattice gas systems [16] and granular material under shear [27]. Let us note that even if it
is not indicated explicitly in the notation, the various parameters ( f, qE A, etc) are now slow
functions of time. The equiprobability hypothesis, which in the ultralong-time limit arises
rather naturally from 1TO equilibration, is much harder to justify when these quantities are out
of equilibrium. At present, the physical principles that would explain equiprobability are not
clear, although it has been tentatively associated with a chaotic property related to the thermal
noise [28]: two ‘clones’ generated by doubling a given system at the time tw but evolving later
with different realizations of the thermal noise would give rise to divergent trajectories.

We would like to stress that the analysis that we have presented implies equivalence
between the relaxation of field-induced perturbations after removal of the field and the
regression of spontaneous fluctuation [13] in a way that generalizes the classical Onsager
argument for equilibrium systems [29]. Conditions of both kinds in fact imply free-energy
minimization with a configurational entropy constraint, and, within the two-step relaxation
model that we have considered, lead to the relation (11).

Up to now we have considered as a reference setting a simple quench from high to
low temperature. We can generalize the present dynamical picture to more complex thermal
histories retaining equiprobability of quasi-states with equal free energy. We would get in this
case a dynamical picture in agreement with the multi-temperature thermodynamics described
in [30], where the macroscopic state of a glass is specified by a suitable number of history-
dependent effective temperatures. The model discussed here corresponds to just an effective
temperature in addition to the external one. According to direct numerical measurement of
the FDR in glass-forming models, this corresponds, to a good approximation, to the situation
found in model liquid systems [22]. Good indications in favour of the present picture come
from numerical simulations of glass-forming liquids. In [31] the relation (17) has been tested
and found to hold good, starting from a direct measure of the FDR and an estimate of the
configurational entropy as the logarithmic number of inherent structures with given energy.
Other interesting numerical evidence has been found within the Kob–Andersen kinetic model
in [16] and in the related problem of granular materials under shear in [27]. Experimentally,
there is clear evidence that violations of fluctuation-dissipation theory are present on long
timescales [8–10], but whether these correspond to effective temperatures is not clear at the
present stage.
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6. Conclusions

In this paper we have discussed a possible picture of how glassy systems visit configuration
space based on the analysis of the fluctuation-dissipation relations during ageing. The
ultralong-time limit, possibly relevant for the case of spin glasses, gives us a case where
we can understand in considerable detail the meaning of the anomalous response and
effective temperatures defined on the basis of off-equilibrium fluctuation-dissipation relations.
The asymptotic value of the anomalous response is related to the existence of a non-
trivial equilibrium OPF P(q), which in turn implies ergodicity breaking in the equilibrium
distribution. The meaning of the equivalence can be found in a dynamical principle of selection
of the quasi-states in the asymptotic limit: quasi-states with equal free energy are selected with
equal probability in the dynamical process. Under these circumstances, where the system is
macroscopically close to equilibrium, the possibility of always being microscopically far from
equilibrium and continuing to age relates to the abundance of states, which, in order for there
to be a non-trivial FDR, must become exponentially large as soon as the free-energy difference
� f becomes finite.

This leads to a dynamical picture that can be generalized to the case in which the system
is macroscopically out of equilibrium, assuming equiprobability of quasi-states of equal free
energy, and a rate of decrease of the configurational entropy independent of possible small
perturbations. This hypothesis predicts the existence of FDR (effective temperatures) related
to the growth of the configurational entropy with the quasi-state free energy and therefore
independent of the particular correlation and response measured. The experimental verification
of this property, and the clarification of the physical principles leading to it, remain open
problems requiring future research.
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[25] Mézard M, Parisi G and Virasoro M A 1985 J. Physique Lett. 46 L217
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